
Generalised hydrodynamics and Langevin equations for viscoelastic binary liquid mixtures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 4963

(http://iopscience.iop.org/0953-8984/2/22/017)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 22:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/22
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
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Generalised hydrodynamics and Langevin equations for 
viscoelastic binary liquid mixtures 

J Jackle and M Pieroth 
Fakultat fur Physik, Universitat Konstanz, D-7750 Konstanz, 
Federal Republic of Germany 

Received 21 September 1989 

Abstract. For viscoelastic binary liquid mixtures, generalised hydrodynamic equations are 
set up, in which the relaxation of the chemical potential due to structural relaxation is taken 
into account. A generalised diffusion equation is obtained, and the spectra of thermal 
fluctuations of concentration and mass density are derived. For very asymmetric mixtures 
of a mobile species in a very viscous solvent, such as a glass-forming liquid near its glass 
transition, coupled Langevin equations for concentration and mass density are derived, 
which may be applied to the calculation of the intensity of non-equilibrium fluctuations as 
observed in quench experiments. 

1. Introduction 

In very viscous binary liquid mixtures, slow structural relaxation can strongly influence 
the interdiffusion of the two molecular species over macroscopic length scales. The 
effect exists in very asymmetric mixtures, in which a mobile species is dissolved in a very 
viscous solvent. A typical case is the solution of small molecules in polymeric melts. In 
such systems, non-Fickian diffusion and sorption have been studied by a number of 
authors (Kishimoto et aZ 1960, Frisch 1962, Crank 1975, Durning 1985). The inter- 
diffusion in very viscous polymer blends is a second, and more complicated, case (Meier 
and Strobl 1987, Strobl and Urban 1988, Schwahn et a1 1990). A third example is the 
interdiffusion of the two metallic components in melts of ternary silicate glasses (Burnett 
and Douglas 1970, Frischat 1975, Mazurin and Porai-Koshits 1984). 

In this paper we are mainly interested in the dynamics of thermal concentration 
fluctuations of long wavelength in such a system, which can be probed by light or neutron 
scattering or by small-angle x-ray scattering (Schroeder 1977, Jantzen etaf 1981 Zarzycki 
and Naudin 1969, Craievich et aZ1986). The concentration fluctuations described may 
occur either in a stable phase in thermal equilibrium or in the initial stage of spinodal 
decomposition in a two-phase region of the phase diagram. 

The physical cause of the coupling between the structural relaxation and the diffusion 
process can be visualised as a swelling of the solvent medium upon penetration of the 
solute particles. It leads to coupled diffusion-relaxation modes, the frequency spectrum 
of which is shown in figure 1 for the case of a single-exponential relaxation with relaxation 
rate y .  The high-frequency diffusion coefficient D(m) governs the diffusion in the 
unrelaxed structure, whereas the low-frequency coefficient D(O), which is smaller than 
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Figure 1. Frequency spectrum of coupled dif- 
fusion and relaxation modes (from Jackle and 
Frisch 1985). D ( 0 )  and D(=) are the diffusion 
coefficients for low and high frequency (see text). 

D(=) as a result of Le Chatelier’s principle (Landau and Lifshitz 1959, section 78), 
incorporates the effect of a structural adjustment of the solvent medium to a change of 
concentration. 

To cover the effects of slow structural relaxation on diffusion, the hydrodynamic 
theory of diffusion in binary liquidmixtures (Cohen etall971, Lekkerkerker and Laidlaw 
1973) needs to be generalised. An early contribution to generalised hydrodynamics of 
liquid mixtures, in which the projection operator formalism of microscopic theory was 
used, is due to Desai (1972). A generalised diffusion equation, which takes the relaxation 
of the chemical potential into account (Jackle and Frisch 1985,1986, see also Durning 
1985), was derived within the framework of the phenomenological theory of thermo- 
viscoelasticity (Jackle 1986, 1990). This equation has been applied to the early stage of 
spinodal decomposition (Binder et a1 1986), where it leads to a generalisation of the 
theory of Cahn and Hilliard (see also Gupta 1985). As shown by Cook (1970), a 
complete description of the linear regime of spinodal decomposition must be based on 
hydrodynamic equations with fluctuations (Landau and Lifshitz 1959, ch XVII), i.e. 
Langevin equations. In a first paper (Jackle and Pieroth 1988) this was achieved by 
introducing a relaxing internal variable, which is assumed to cause the relaxation of the 
chemical potential (Frisch 1964). However, the ambiguity of the definition of the internal 
variable leads to the occurrence of an ill defined parameter in the final formula for the 
time-dependent structure factor for the concentration fluctuations. Therefore, in the 
present paper, we aim to derive Langevin equations for well defined physical variables 
only. 

The purpose of the paper is twofold. First we set up the generalised hydrodynamic 
equations for concentration c and mass density p (section 2), and derive the spectra of 
thermal fluctuations of these quantities (section 3), which can be measured by inelastic 
scattering of light and neutrons. Isothermal conditions are assumed. Considering ther- 
mal fluctuations, the effect of temperature fluctuations is assumed to be small compared 
with that of the concentration fluctuations. In section 4 the generalised diffusion equation 
is derived in which the coupling of structural relaxation to diffusion is taken into account, 
Secondly, the results obtained for the fluctuation spectra enable us to construct (in 
section 5 )  Langevin equations for the slow fluctuations of concentration and mass 
density, which are governed by diffusion and structural relaxation. These are the 
equations required for describing the temporal evolution of the non-equilibrium put- 
tuations of concentration and mass density observed in quench experiments. It is pointed 
out in the concluding section (section 6) that the new Langevin equations lead to the 
replacement of the ill defined coupling parameter occurring in the internal-variable 
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theory by a combination of measurable quantities. In the derivation of the Langevin 
equations the simplifying assumption is made that the relation between changes of the 
chemical potential and changes of concentration and mass density is instantaneous, and 
that only the viscoelastic stress-strain relation is a retarded constitutive equation. The 
validity of this assumption can be tested experimentally using the results of section 3. 
We expect the assumption to apply for very asymmetric solutions of a mobile species of 
particles in a very viscous solvent medium, in which the slow relaxation processes occur. 
In such a system the reaction of the solvent medium to concentration changes is retarded, 
whereas the mobile solute molecules should come to local equilibrium instantaneously. 

2. Generalised hydrodynamic equations for viscoelastic binary liquid mixtures 

It is convenient (Landau and Lifshitz 1959) to describe diffusion in a two-component 
liquid in terms of the concentration of one component, which is defined as 

c = P l l P  (2.1) 
where p 1  and p are the mass densities of species 1 and of the mixture, respectively; p 
serves as the second variable. In the special situation considered in section 5 ,  c is 
the concentration of the mobile particles, which contrast with the second species of 
molecules of the viscous host medium. According to irreversible thermodynamics (de 
Groot 1960), the thermodynamicdrivingforceof the flux ofconcentration is proportional 
to -grad(p/T). The temperature Tis treated as a constant. The chemical potential p is 
defined by 

P = P u , h  - P 2 h 2  (2.2) 
in terms of the chemical potentials and masses (per particle) of the two components. 
The same is true for diffusion in an isotropic elastic medium, and, by interpolation, also 
in a viscoelastic medium. For isothermal conditions, this leads to the linearised diffusion 
equation in the form 

d(r, t )  - M A [ P ( ~ ~  t )  + pext(r, t ) ]  = 0 (2.3) 
with a mobility M that is assumed to be constant. In equation (2.3) the effect of 
external potentials (per molecule) V1,*(r, t )  is included in an ‘external chemical potential’ 
pext(r, t ) ,  which in analogy to (2.2) is defined as 

p e x t  = VlIm1 - V2Im2. (2 14) 
The second equation for c(r,  t )  and p ( r ,  t )  is the linearised form of Newton’s law, 

(2.5) 
Here U, is the ath Cartesian component of the mean local velocity of the liquid mixture, 
and a denotes the stress tensor, which can be decomposed into pressure P and shear 
stress ds) according to 

which reads 

 PO^, = Vpaep - nOVaVext. 

a,p = -6,P + a$. (2.6) 
The external force term in (2.5) represents the sum of the external forces acting on both 
types of molecules and is given by 

-nOVVext = -nl ,OVV, - n2,0VV2. (2.7) 
Here n1,2 are the number densities of either species ( n  = n1 + nz). The index zero 
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denotes the mean equilibrium value for any quantity. In addition to equations (2.3) and 
(2 .5) ,  the linearised continuity equation 

P(r,  t )  + po div u(r, t)  = 0 (2.8) 

is needed to eliminate the longitudinal component of the velocity field u(r, t) .  
The general equations of motion (2.3), (2.5) and (2.8) for concentration, mass 

density and velocity need to be supplemented by linear constitutive equations for 
chemical potential, pressure and shear stress. The deviation of the local chemical 
potential from the global equilibrium value, for example, can be expressed as 

- - x  

+ Plp(0 )44r ,  t> + [Plp(m) - Plp(0)I J C P / l . p ( t  - t’)P(r, t’) dt‘ (2.9) 
--z 

where plc(0) = (dp/dc)f) and PI,(=) = (dp/dc)r) denote the low-frequency, i.e. 
thermodynamic, and high-frequency derivatives of the chemical potential with respect 
to the concentration, etc. The relaxation functions q ~ ~ , ~ ( z )  and QI~JZ) describe the 
relaxation of the chemical potential after a step-like change of concentration and density 
at z = 0 from the initial to the final change. They are normalised by the condition q ( z  = 
0) = 1. Expression (2.9) is obtained using Boltzmann’s superposition principle for after- 
effects in linear media. 

Writing similar retarded constitutive equations for pressure and shear stress (Jackle 
1986), one obtains from equations (2.3), (2.5) and (2.8) the following generalised 
hydrodynamic equations for concentration and mass density: 

Here 

cf (0) = Plp (0)  (2.11) 

defines the low-frequency sound velocity at constant concentration, which is the true 
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velocity of sound waves of low frequency, since diffusive modes do not couple to long- 
wavelength sound waves. The relaxation function 9 ul,p(t) for longitudinal stress and 
the high-frequency longitudinal sound velocity c,,,(m) are defined by 

[C?,,(@J) - c:(o)IQb,.p(~) = [PIP(") - PIP(O)lTP.P(~) + ~ [ G ( C O ) / P ~ l Q 7 c ( ~ )  (2.12) 

where Q ) ~ , ~ ( Z )  and qG(t )  are relaxation functions occurring in the memory terms of the 
constitutive equations for pressure and shear stress, and G(m) is the high-frequency 
shear modulus. 

The generalised hydrodynamic equations (2.10) can be brought into a more compact 
form by taking the Fourier transform with respect to time and introducing frequency- 
dependent derivatives like 

Plc (4  = PIc(0) - i 4 q c ( = )  - P ~ C ( O ) l @ P , C ( 4  

where @(CO) denotes the Laplace transform of a relaxation function ~ ( 2 ) :  

(2.13) 

@(U)  = lox d t  e'"'T(z). (2.14) 

Similarly, a frequency-dependent longitudinal modulus at constant concentration 
C,,,(o) is defined by 

C l 3 C ( N P O  = c m  - i+?,c(=> - c f ( o > l @ u , . , ( 4 .  (2.15) 

Using these definitions, the Fourier transform of equations (2. 10a) and (2. lob) can be 
written as 

[-iw - MPlc(o)Alc(r, U) - M q p ( 4 A d r ,  U) = MApu,,,(r, 0) 

and 

-Pjc(w)Ac(r, 0) - { w 2  + [C,,,(4/PolA>P(r, 0) = noAVext(r, U). (2.16b) 

Concerning the frequency-dependent generalisations of thermodynamic derivatives 
and moduli, the following comments are in order. The frequency-dependent derivatives 
like pl,(w) (equation (2.13)) interpolate between the low- and high-frequency limits, 
which correspond to the thermodynamic derivatives for the liquid and for the isotropic 
elastic medium obtained by freezing the configurational degrees of freedom. Formula 
(2.15) interpolates between the hydrodynamic limit, which contains shear and bulk 
viscosities q and c and is given by 

(2.16~) 

C$dr(w) = poc:(0) - iw(fq + c) (2.17) 

and the high-frequency longitudinal sound velocity. Generalising formula (2.17) for 
arbitrary frequencies, one can introduce frequency-dependent shear and bulk viscosities 
as an alternative to using frequency-dependent elastic moduli. As a general rule, the 
thermodynamic relations between second derivatives of thermodynamic potentials also 
hold for the frequency-dependent quantities. We give the following examples, which 
are used in later sections. Again for the sake of a compact presentation, we introduce 
some further notations. We denote the frequency-dependent bulk modulus for constant 
concentration or chemical potential by K,(w) or K , ( o ) ,  and the frequency-dependent 
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derivatives of the chemical potential with respect to the concentration at constant mass 
density or pressure by B,(w) or Bp(w) :  

(2 .18~)  

(2.186) 

(2 .18~)  

(2.18d) 

Starting from retarded constitutive equations analogous to (2.9) for concentration and 
pressure in terms of changes of mass density and chemical potential, one derives the 
relation 

Kc(w)/K,(w) = B,(w) /B , (o)  (2.19) 

which is analogous to the better known relation between the adiabatic and isothermal 
bulk moduli Ks and KT and the specific heats c, and cp. Another example of interest is 
the generalised Maxwell relation 

P l p ( 4  = ( l /Pi)PIc(4 (2.20) 

which can be proved either in the framework of thermodynamic relaxation theory or 
using the Mori-Zwanzig projection operator formalism (Jackle 1986). From (2.20) one 
derives the formula 

K c ( w )  - K J w )  = [ P ~ c ( 4 l 2 / ~ P 0 B u ( 4 l  

B u ( w )  - BP(@) = ~ ~ l c ( ~ ) 1 2 / ~ P o ~ c ( ~ ) l .  

(2.21) 

(2.22) 

which, by (2.19), is equivalent to 

The last equation is analogous to the relation between the difference of the specific heats 
cp and cu and the thermal expansion coefficient. 

3. Dynamic susceptibilities and fluctuation spectra for concentration and mass density 

Using linear response theory (Kadanoff and Martin 1963, Jackle 1978), dynamic sus- 
ceptibilities and fluctuation spectra are derived from our generalised hydrodynamic 
equations (2.10) in the usual way. The fluctuation-dissipation theory relates the fluc- 
tuation spectra S,,,(k, w )  to the dynamic susceptibilities Xx,y(k, o) by 

S1.y ( k  w )  = (2kBT/4 Im X x , y  (k  0). (3.1) 
The three dynamic susceptibilitiesX,,,(k, U), x c J k ,  w )  andXpJk, w )  are obtained from 
the solution of the generalised hydrodynamic equations for 6c(r,  t )  and 6 p ( r ,  t )  in 
the presence of plane-wave-like external perturbations pext(r, t ) ,  Vext(r, t) 0: 

exp[i(k r - ut)]. The relation between this solution and the dynamic susceptibilities 
follows from the definitions of c, pext and Vex, (equations (2.1), (2.4) and (2.7)) and reads 

t, = X C . C ( ~ ,  W)Pop.lext(r7 + Xc,p(k, w)(no/PO)VeXt(r, t ,  ( 3 . 2 ~ )  
(3.2b) - 6 ~ ( r 7  t )  = ~ c , p ( k ,  w)PoPext(r, t )  + ~ p . p ( k >  m)(no/Po)Vext(r, t) .  

The results for the dynamic susceptibilities are given by 

( 3 . 3 ~ )  
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Xc.p(k 0) = -(M/po)P,,(w)k4/1[[-iw + MB,(w)k21{-0* + [ c l , c ( 4 / P o l ~ 2 >  

Xp.& = P o k 2 / { - W 2  + [C1.c(NPolk2 

- (M/Pi )  [p lc (4 l2k4I  (3.3b) 

- (M/pg)[Pjc(w)]2k4/[-iw + MBu(0)k2]}. (3.3c) 

The static limitsXxJk, w = 0) of the susceptibilities, which determine the total intensity 
and correlation of mass density and concentration fluctuations P k  and ck according to the 
fluctuation formula 

X x . y ( k ,  = 0 )  = / 3 ( X R Y - k )  /3 = ( k J J - 1  (3.4) 

( 3 . 5 ~ )  

(3.5b) 

(3.5c) 

The fluctuation spectra, which follow from expressions (3.3) using the fluctuation- 
dissipation theorem (3. l), display the contributions of longitudinal sound waves, dif- 
fusion and viscoelastic relaxation. Explicit expressions for the three separate con- 
tributions are derived in the limiting cases of rapid and slow relaxation, in which the 
average relaxation rate 7 is much higher or much lower than the frequency of the 
longitudinal sound wave and of the diffusion mode for wavevector k: 

r %. c,,c(O)k for fast relaxation ( 3 . 6 ~ )  

7 4 D(%)k* for slow relaxation. (3.6b) 

In the first case (3.6a), referred to as the hydrodynamic limit, only sound waves and 
diffusion contribute to the fluctuation spectra. The hydrodynamic correlation functions 
for a binary liquid mixture including the contributions of heat conduction were calculated 
by Cohen et a1 (1971) and by Lekkerkerker and Laidlaw (1973). In our calculation, heat 
conduction is not taken into account. We assume here that heat conduction leads only 
to a relatively small contribution to the fluctuation spectra of concentration and mass 
density compared with the effect of particle diffusion, as we know that its contribution 
to the density fluctuation spectrum of viscoelastic one-component liquids is usually 
small. To obtain the hydrodynamic results, one has to replace all frequency-dependent 
quantities occurring in (3.3), except the longitudinal modulus C,, , (o) ,  by their thermo- 
dynamic zero-frequency limits; the hydrodynamic expression for the longitudinal modu- 
lus contains the low-frequency sound velocity c,(O) at constant concentration and the 
shear and bulk viscosities r ]  and [, and is given in equation (2.17). The following formulae 
are derived: 

( 3 . 7 ~ )  

D(O)k*{O* - [c,(O)k]2} - 
{CO* - [ ~ ~ ( o ) k ] ~ } *  + [ ~ k ~ r ( o ) ] ~  (3.7b) 
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B P ( O )  [cc (o)k2I2r(o) 
B,(o) {CO* - [cc(0)k12>* + [0~r(o)12 +- 

(3.7c) - (1 - W )  D(O)k*{W* - [CC(0)k]*} 
B,(o) {w’ - [c~(o)~]~}~ + [ ~ k ~ r ( o ) ] ~  

The coefficient r(0) given by 

r(0) = + O/PO + I ~ , ( O ) / B P ( O )  - 11D(O) (3.8) 
determines the damping of the longitudinal sound waves. D(0) is the zero-frequency 
limit of the frequency-dependent diffusion coefficient D(o) defined in the following 
section (equations (4.7) and (4.13)). The expressions (3.7) are completely analogous to 
thosefor a one-component liquid (Kadanoff and Martin 1963), in which the contributions 
of heat conduction are replaced by those of particle diffusion in the binary mixture. 
Accordingly, in the density fluctuation spectrum (3 .7~)  the ratio of the intensity of the 
Rayleigh line due to diffusion to the intensity of the two Brillouin lines arising from 
sound waves is given by the analogue of the Landau-Placzek ratio, with the derivatives 
B,  and BP of the chemical potential with respect to the concentration replacing the 
specific heats cp and c, (cf equation (2.22)): 

ZR/ IB  = B , ( o ) / B P ( o )  - 1. (3.9) 
In the opposite case (3.6b) of very slow relaxation, which we term the ‘glassy limit’, 

the slow viscoelastic relaxation contributes a narrow quasi-elastic line to the fluctuation 
spectra. In the spectrum of density fluctuations, this contribution is often called the 
‘Mountain line’. To obtain the contributions of sound waves and diffusion, all frequency- 
dependent quantities may be replaced by their high-frequency ( W  -+ =) limits. The 
complete expressions for the fluctuation spectra in the glassy limit read 

(3. loa) 

(3. lob) 
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(3.10c) 

The coefficient r ( m )  of sound damping, which occurs in equations (3. 106, c), is given by 
(3.11) 

In the glassy limit, there is only a contribution of diffusion to sound damping; the 
viscosity term is absent since ‘phonon viscosity’ is not taken into account. For the 
definition of the derivative Bu = D / M  of the chemical potential with respect to the 
concentration, see equation (4.7). In each formula (3. loa-c) the last term describes 
the contribution of the slow viscoelastic relaxation. In the spectrum of concentration 
fluctuations (3. loa) the ratio of the intensity of the relaxation peak to that of the diffusion 
peak is 

(3.12) 
In the spectrum of density fluctuation (3.10~)  the relative intensities of the Brillouin 
lines, of the Rayleigh line due to diffusion and of the mountain line arising from 
relaxation are found to be 

I B / ~ t o t  = K ,  ( O ) / C i , C P )  (3.13a) 

IR/A”t  = [ K ,  (O)/C,,p(x)I [1 - B u ( x ) / B b  (XI1 (3.13b) 

I M l l t o t  = 1 - K,(O)/C1,,(9 (3 .13~)  
In the glassy limit the Brillouin lines are shifted to higher frequencies compared with the 
hydrodynamic case, and their relative intensity is reduced. As for the Rayleigh line, its 
width is increased, and one also expects that its relative intensity is lower than the 
hydrodynamic result. In the analogous case of the Rayleigh line due to heat conduction 
in one-component liquids, the relative weight of the Rayleigh line, which is proportional 
to the square of the thermal expansion coefficient, is considerably reduced in the slow 
relaxation limit (Allain and Lallemand 1979, Sidebottom and Sorensen 1989, Jackle 
1990). It is not clear to us whether the Rayleigh line due to diffusion in binary mixtures 
generally shows the same behaviour. To indicate the factors involved, it is useful to 
quote the formula for a frequency-dependent ‘Landau-Placzek ratio’ for the Rayleigh 
line due to diffusion, which follows from equations (2.22) and (4.7): 

r (x )  = [B,(=)/BuW - I lD(w) .  

4e l /h , f f  = B.(x)/B,(O) - 1. 

(3.14) 

Taken for w = 0 and o = =, this expression gives the relative intensity of the Rayleigh 
line in the hydrodynamic and in the glassy limit. If only the longitudinal moduli Ci,c and 
C,+ in (3.14) are frequency-dependent (which case is assumedin section 5 ) ,  the Landau- 
Placzek ratio shows the expected behaviour. 

The relative intensities of the three contributions to the density fluctuation spectrum 
can easily be determined also for the intermediate case 

(3.15) 
In this limit the relative intensity of the Brillouin lines is also given by (3.13a), but (3.136) 
and (3.13~)  are replaced by 

D(O)k2 4 7 4 c , , , (x)k .  

(3.16a) 

(3.166) 
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100 

Figure 2. The density fluctuation spectrum of a viscoelastic binary mixture in dimensionless 
units. The number on each curve denotes the ratio y / [ c , (O)k ]  of relaxation rate and hydro- 
dynamic sound frequency. For the values of the material parameters, see equation (3.17). 

The result (3.16a) for the Rayleigh line agrees with the hydrodynamic Landau-Placzek 
formula (3.9). The intensity of the Mountain line given by (3.16b) compensates the loss 
of intensity of the Brillouin lines relative to the hydrodynamic case. 

The intensity ratios (3.12), (3.13) and (3.16) are again analogous to results derived 
for a one-component liquid including heat conduction (Jackle 1986,1990). 

In figure 2 we finally illustrate the gradual transition of the spectrum of density 
fluctuations S,.,(k, w )  from the hydrodynamic to the glassy limit as a function of the 
temperature-dependent relaxation rate y .  The shift of the position of the Brillouin peak 
from the hydrodynamic sound frequency c,(O)k to the frequency c,.,(.o)k in the glassy 
limit is marked. The strong broadening of the Brillouin line for y/[c,(O)k] = 1 should 
also be noted. The curves are calculated for the purely viscoelastic case in which only 
the longitudinal modulus is frequency-dependent (cf section 5). A single relaxation rate 
y is assumed. The plot depends on three dimensionless combinations of parameters, for 
which the following values are chosen: 

M,q,k2/c,(0)k = 0.1 c : c ( = ) / c m  = 2 K,(O)/K,(O) = 0.6. (3.17) 

The last value corresponds to a Landau-Placzek ratio of 2/3. 

4. The generalised diffusion equation 

We are mainly interested in situations in which particle diffusion and structural relaxation 
are the slowest processes occurring in the binary liquid. For given wavevector k such a 
situation occurs if the condition 

D k 2 ,  7 D T ( x ) k 2 ,  c1,,(m)k (4.1) 
is fulfilled, where 7 is the average viscoelastic relaxation rate, and D akd DT denote 
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the coefficients of diffusion and thermal diffusivity. In this case, these processes are 
isothermal, and the condition of mechanical equilibrium 

holds. A spatial variation of the concentration leads to a local swelling (or contraction) 
of the liquid mixture compared with its equilibrium mass density po. The displacement 
field u(r,  t )  caused by the swelling is determined by condition (4.2) and boundary 
conditions. We consider only the cases of an infinite medium and of a semi-infinite 
medium bounded by a plane. The deviation of the concentration from the equilibrium 
value is assumed to vanish at infinity. The external potential Vex, is dropped. Inserting 
the constitutive equations for P and U(') and taking the Fourier transform with respect 
to time, we can write the condition of mechanical equilibrium (4.2) as 
C,,,(o) grad div u(r,  o) + ioG(X)qjG(o) rot rot u(r,  o) 

vp0.p = noV*Vext (4.2) 

= Pl,(w) grad c(r,  w). (4.3) 
This equation has the solution 

rot u(r,  U )  = 0. P I c ( 4  div u(r,  w )  = ~ 

C, , , (W)  c(r ,  w, 

Using 

we obtain for the variation of the chemical potential 
div u(r,  o) = -p ( r ,  o ) / p o  

,U(., = Bu(w)c(r ,  U )  

(4.4) 

with an effective frequency-dependent derivative of ,D with respect to c given by 

B u ( o )  = B u ( o )  + [ B P ( W )  - B " ( 0 > l ~ C ( 4 / C , , C ( 4  

~ , ( 4 / B , ( 4  = CI,c(4/Cl ,p(4.  (4.8) 

(4.7) 
where B,(w) and B p ( o )  are given by (2 .18~)  and (2.22). It is useful to note the following 
relation for B u ( o ) ,  similar to equation (2.19): 

The frequency-dependent longitudinal modulus at constant chemical potential Cl,,( U )  

occurring in this relation is obtained by replacing K , ( o )  by K,(w) in the expression for 
C,,,(w) (equation (2.15)): 

Writing B,(w) as 
(4.10) 

we define a relaxation function qp,c .u(z )  by its Laplace transform. Using this rep- 
resentation, the inverse Fourier transform of (4.6) yields 

6 p ( r ,  t )  = Bp(0)Gc(r, t )  + [ B , ( x )  - B p ( O ) ]  1' qp,c:o( t  - f ' ) t ( r ,  t ' )  dt ' .  

C,~,(w) = K , ( w )  - i w $ G ( ~ ) @ j ( o ) .  (4.9) 

B, (o )  = BP(O) + [ B u ( m )  - ~ P ( ~ > l ( - - i 4 ~ j , . c , u ( o )  

(4.11) 
--1: 

Combined with equation (2.3), this leads to the generalised diffusion equation 

t ( r ,  t )  - D(O)Ac(r, t )  - ID(=) - D(O)] 1' qp ,c ;a ( t  - f ' ) A t ( r ,  f ' )  dt '  
--z 

= MAPext ( r ,  t )  
with the frequency-dependent diffusion coefficient defined by 

(4.12) 
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D(0) = MB,(o) .  (4.13) 

Calculating the dynamic susceptibility xc , , (k ,  o) from (4.12) indeed yields expression 
( 3 . 3 ~ )  without the --U* term in the denominator. 

5. Langevin equations for coupled processes of diffusion and swelling in a Maxwellian 
model 

In the following we consider a simplified viscoelastic model in which only the relations 
between pressure and mass density, and between shear stress and strain, are retarded. 
The response of the chemical potential to changes of c and p is assumed to be instan- 
taneous. Consequently, only bulk and longitudinal elastic moduli are frequency-depen- 
dent; the derivatives,q.and plP = Plc/pi are constants. Thevalidityof these assumptions 
needs to be tested experimentally by measuring the spectra of density and concentration 
fluctuations and comparing them with the general results given in section 3. As already 
mentioned. we expect this simplification to be appropriate for the solution of a mobile 
species of particles in a very viscous solvent. In such a system the only effect of structural 
relaxation should be the retarded swelling of the host medium, which follows all changes 
of concentration of the mobile particles; for given swelling, which is described by the mass 
density p(r ,  t ) ,  the response of the mobile particles should obey the ordinary diffusion 
equation with a drift term allowing for the inhomogeneity of the medium. The visco- 
elastic retardation of the swelling causes the diffusion constant at high and low fre- 
quencies to be different. From (4.7), (2.18c), (2.22) and (4.13) we obtain for the 
difference 

D(m)  - D(0)  = [ M ( P ~ c ) 2 / ~ 0 1 ( ~ / ~ c ( 0 )  - W l . c ( = > ) .  (5.1) 

We mention that the simplified model introduced in this section is analogous to Zwanzig’s 
explanation (Zwanzig 1988) of a frequency-dependent specific heat cp( o) of viscoelastic 
liquids, in which only the dispersion of the isothermal longitudinal modulus, CI,T (or 
equivalently of a frequency-dependent longitudinal viscosity) is taken into account. It 
has been pointed out (Jackle 1990), however, that Zwanzig’s model is not in agreement 
with experimental data for certain viscous liquids near the glass transition. As a further 
simplification, the relaxation of pressure and shear stress is assumed to be exponential 
and described by the same function 

c p P , , ( ~ )  = cpG(Z)  = exp(-yz). (5 .2)  
It is shown that for this model the concentration and the mass density obey two coupled 
differential equations, which are of first order in time. We subsequently construct 
the stochastic force terms to obtain Langevin equations for the slow processes in a 
viscoelastic mixture with fluctuations. 

Under the conditions stated above, we obtain from (4.4) and (4.5) 

(5.3) 

with a new relaxation rate y’ given by 

Y ’/Y = Kc ( w G , c  ( x ) .  (5.4) 
Taking the inverse Fourier transform of (5.3) with respect to time yields the following 
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relation between 6p(t) and dc(t>, which describes the retarded swelling of the material 
after changes in concentration: 

From this equation the desired differential equation is found after differentiating with 
respect to time and eliminating the integral term. The differential equation has the form 
of a relaxation equation and reads 

On the LHS of this equation we identify the retarded change of the mass density, which 
is due to swelling, as 

6Pret = 6~ + ~o(P /c /C , , c (~ ) )ac .  (5.7) 

The second differential equation is the ordinary diffusion equation with a term pro- 
portional to plp6p(r, t )  describing the feedback between 6p  and 6c: 

i(r, t )  - MA[,qdc(r, t )  + ,ulP6p(r, t ) ]  = 0. (5 .8)  

~ ( t )  = ( ~ k ( t ) ,  Pret ,k ( t ) )  (5.9) 

Taking the spatial Fourier transform and introducing the two-vector 

the two equations (5.6) and (5.8) can be written as 

i ( t )  + .nx(t) = 0 

with the dynamic matrix Q defined by 

where D(m)  is given by (4.7) and (4.13) 

W ) / M  = P l c  - ( p l c ) * / [ P 0 ~ l . c ~ ~ ) 1 .  

(5.10) 

(5.11) 

(5.12) 

We now add stochastic force terms ( y o ( t ) ,  q l ( t ) )  describing Gaussian white noise to the 
RHS of the set (5.10) of deterministic differential equations. The stochastic differential 
equations read 

X(t) + .nx(t )  = q(t). (5.13) 

The intensity of the stochastic forces is determined by the kinetic (or Onsager) coef- 
ficients L,l according to 

(q,(t)q;C ( t ' ) }  = 2k,TLf16(t  - f'). (5.14) 

We are left with the problem of calculating the matrix of kinetic coefficients L ,  associated 
with the set of first-order differential equations (5.10). If S,, = (x,x;C ) denotes the 
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elements of the covariance matrix for the thermal fluctuations of the variables (5.9), the 
formula for L is (Fox 1978) 

L = f i s / ( k B  T ) .  (5.15) 
All depends now on the right use of this formula. The point one must be aware of is that 
only the slow fluctuations described by the stochastic differential equations (5.13) 
must be included in the covariance matrix in formula (5.15), whereas thermodynamic 
fluctuation formulae give the total intensity of thermal fluctuations. Therefore the 
thermodynamic fluctuation formula 

( I P k 1 2 ) =  k B T X p , p ( k ,  kBT(pi /Kp(0) )  (5.16) 
for the total intensity of the mass density fluctuations must not be used for Sll,  since it 
includes the contribution of the longitudinal sound waves (and of the heat conduction 
mode), which are not described by (5.10). Subtracting the sound-wave contribution, we 
obtain for the intensity of the slow mass density fluctuations 

(5.17) 
Using this expression, after some algebra one finds the following result for L: 

( I P k  12)slow = kBTpg(l/KU(0) - l / c l . c ( x ) ) .  

(5.18) 

The matrix of kinetic coefficients is diagonal. The coefficient Loo is the same as in the 
Cahn-Hilliard-Cook equation (Cook 1970). The interesting point is that the coefficient 
LI1, which determines the strength of the stochastic forces acting on the retarded change 
Sp,,, of the mass density, is given by measurable viscoelastic parameters. In terms of the 
low- and high-frequency longitudinal sound velocities cc(0) and e,,,(=) , the formula for 
L l ,  can be written as 

(5.19) 

If, on the other hand, formula (5.16) had been used in evaluating equation (5.15), the 
result would have been an asymmetric L matrix, which is obviously wrong. We note that, 
apart from the contribution of G ( x )  to C,,,(m), the result (5.18) can also be obtained 
directly from the internal-variable theory (Jackle and Pieroth 1988) by defining 6p,,, as 

(5.20) 
and using the relations between thermodynamic derivatives involving 5 and parameters 
of the viscoelastic constitutive equations. 

For completeness, we finally write down the coupled Langevin equations for the full 
density change 6p  instead of the retarded part dp,,, as second variable. Defining a two- 
vector 

i ( t >  = ( C & ( t ) ,  P & W )  (5.21) 

they can again be written in the form of equation (5.12) but with a different dynamic 
matrix fl given by \ 

L11 = Y ’ P o ( l / c m  - M c ( . - ; > > .  

6P - (ap/ac),Sc = ( a P / m 6 6  
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6. Concluding remarks 

The results derived in this paper are relevant for two different types of experiment. 
First, we have calculated the fluctuation spectra of long-wavelength fluctuations of the 
concentration and the mass density, which can be probed by inelastic light scattering 
(Demoulin et a1 1974, Schroeder 1977, Sidebottom and Sorensen 1989). Secondly, we 
derived Langevin equations, from which the temporal evolution of the intensity of these 
same fluctuations in quench experiments can be derived. The fact that the variables used 
in our description are physically well defined and only measurable parameters enter 
removes a deficiency of our earlier internal-variable theory (Jackle and Pieroth 1988). In 
the expression for the time-dependent structure factor for the concentration fluctuations, 
which is valid in the linear regime, a coupling parameter A entered, which was related 
to the ill defined internal variable and could not be calculated in terms of measurable 
physical quantities. Our new Langevin equations (5.10), on the other hand, lead to the 
same result with A replaced by the combination 

of measurable thermodynamic and viscoelastic parameters (Pieroth 1989). 
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